Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.621
Filtrar
1.
Sci Rep ; 14(1): 7766, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565927

RESUMO

The occurrence of major depressive disorder is widespread and can be observed in individuals belonging to all societies. It has been suggested that changes in the NO pathway and heightened oxidative stress may play a role in developing this condition. Anethole is a diterpene aromatic compound found in the Umbelliferae, Apiaceae, and Schisandraceae families. It has potential pharmacological effects like antioxidant, anxiolytic, analgesic, anti-inflammatory, antidiabetic, gastroprotective, anticancer, estrogenic, and antimicrobial activities. This study aimed to investigate the potential antidepressant properties of Anethole in a mouse model experiencing maternal separation stress while also examining its impact on oxidative stress and nitrite levels. The research involved the participation of 40 male NMRI mice, separated into five distinct groups to conduct the study. The control group was administered 1 ml/kg of normal saline, while the MS groups were given normal saline and Anethole at 10, 50, and 100 mg/kg doses. The study comprised various behavioural tests, including the open field test (OFT), forced swimming test (FST), and splash test, to assess the effects of Anethole on the mice. In addition to the behavioural tests, measurements were taken to evaluate the total antioxidant capacity (TAC), malondialdehyde (MDA), and nitrite levels in the hippocampus of the mice. According to the findings, maternal separation stress (MS) led to depressive-like conduct in mice, including a rise in immobility duration during the FST and a reduction in the duration of grooming behaviour in the splash test. Additionally, the results indicated that MS correlated with an increase in the levels of MDA and nitrite and a reduction in the TAC in the hippocampus. However, the administration of Anethole resulted in an increase in grooming activity time during the splash test and a decrease in immobility time during the FST. Anethole also exhibited antioxidant characteristics, as demonstrated by its ability to lower MDA and nitrite levels while increasing the TAC in the hippocampus. The results suggest that Anethole may have an antidepressant-like impact on mice separated from their mothers, likely partly due to its antioxidant properties in the hippocampus.


Assuntos
Derivados de Alilbenzenos , Anisóis , Antioxidantes , Transtorno Depressivo Maior , Humanos , Camundongos , Masculino , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Depressão/tratamento farmacológico , Depressão/metabolismo , Nitritos/metabolismo , Transtorno Depressivo Maior/tratamento farmacológico , Privação Materna , Solução Salina/farmacologia , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Antidepressivos/metabolismo , Estresse Oxidativo , Hipocampo/metabolismo , Modelos Animais de Doenças , Comportamento Animal
2.
Mol Biol Rep ; 51(1): 481, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578530

RESUMO

BACKGROUND AND AIM: Type 2 diabetes mellitus (T2DM) and depression are often linked. Several studies have reported the role of molecular markers either in diabetes or depression. The present study aimed at molecular level profiling of Indoleamine-2,3-dioxygenase (IDO), brain-derived neurotrophic factor (BDNF) and cellular senescence in patients with type 2 diabetes with and without depression compared to individuals with healthy controls. METHODS: A total of 120 individuals diagnosed with T2DM were enlisted for the study, with a subset of participants with and without exhibiting depression. The gene expression analysis was done using quantitative real-time PCR. RESULTS: Indoleamine 2,3 dioxygenase (p < 0.001) and senescence genes (p < 0.001) were significantly upregulated, while brain derived neurotrophic factor (p < 0.01) was significantly downregulated in T2DM patients comorbid with and without depression when compared to healthy controls. CONCLUSION: Indoleamine 2,3 dioxygenase, Brain derived neurotrophic factor and cellular senescence may play a role in the progression of the disease. The aforementioned discoveries offer significant contributions to our understanding of the molecular mechanisms that underlie T2DM with depression, potentially aiding in the advancement of prediction and diagnostic methods for this particular ailment.


Assuntos
Depressão , Diabetes Mellitus Tipo 2 , Humanos , Fator Neurotrófico Derivado do Encéfalo/genética , Senescência Celular/genética , Depressão/genética , Depressão/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo
3.
Eur J Pharmacol ; 971: 176525, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38561101

RESUMO

Depression is a debilitating mental disease that negatively impacts individuals' lives and society. Novel hypotheses have been recently proposed to improve our understanding of depression pathogenesis. Impaired neuroplasticity and upregulated neuro-inflammation add-on to the disturbance in monoamine neurotransmitters and therefore require novel anti-depressants to target them simultaneously. Recent reports demonstrate the antidepressant effect of the anti-diabetic drug liraglutide. Similarly, the natural flavonoid naringenin has shown both anti-diabetic and anti-depressant effects. However, the neuro-pharmacological mechanisms underlying their actions remain understudied. The study aims to evaluate the antidepressant effects and neuroprotective mechanisms of liraglutide, naringenin or a combination of both. Depression was induced in mice by administering dexamethasone (32 mcg/kg) for seven consecutive days. Liraglutide (200 mcg/kg), naringenin (50 mg/kg) and a combination of both were administered either simultaneously or after induction of depression for twenty-eight days. Behavioral and molecular assays were used to assess the progression of depressive symptoms and biomarkers. Liraglutide and naringenin alone or in combination alleviated the depressive behavior in mice, manifested by decrease in anxiety, anhedonia, and despair. Mechanistically, liraglutide and naringenin improved neurogenesis, decreased neuroinflammation and comparably restored the monoamines levels to that of the reference drug escitalopram. The drugs protected mice from developing depression when given simultaneously with dexamethasone. Collectively, the results highlight the usability of liraglutide and naringenin in the treatment of depression in mice and emphasize the different pathways that contribute to the pathogenesis of depression.


Assuntos
Depressão , Flavanonas , Liraglutida , Camundongos , Animais , Depressão/metabolismo , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Inflamação/tratamento farmacológico , Neurogênese , Dexametasona/farmacologia
4.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(2): 405-410, 2024 Feb 20.
Artigo em Chinês | MEDLINE | ID: mdl-38501427

RESUMO

OBJECTIVE: To evaluate the effect of modulating gut microbiota for improving brain injury in rats with post-stroke depression. METHODS: Adult SD rats were randomized into normal control, middle cerebral artery occlusion (MCAO), post-stroke depression (PSD), PSD with fecal transplantation, PSD with antibiotics (rifaximin), PSD with probiotics (lactobacilli), and PSD with fluoxetine treatment groups (n=9). Neurological function scores of the rats were determined, and the changes in sugar water preference and immobility time in forced swimming test were observed; plasma levels of trimethylamine N-oxide (TMAO) and hydrogen sulfide (H2S) were detected with ELISA, Occludin, and the expressions of occludin, caudin-5 and IgG proteins Ⅰ the brain tissues were determined using Western blotting. RESULTS: Compared with those in the control group, the rats in MCAO and PSD groups had significantly increased neurological function scores, TMAO level, the ratio of TMAO/H2S, and immobility time in forced swimming test with a lowered level of H2S (P < 0.05). These changes were more obvious in PSD rats, which also exhibited a reduced sugar water preference with increased IgG protein and decreased occluding and caudin-5 expressions in the brain tissue (P < 0.05). TMAO/H2S ratio in PSD rats was positively correlated with neurological function score (R2=0.3235, P=0.0269) and immobility time in swimming (R2=0.6290, P=0.0004) and negatively with sugar water preference (R2=-0.4534, P=0.0059). Treatment with fecal transplantation, antibiotics, probiotics and fluoxetine all significantly reduced neurological function scores, immobility time in forced swimming, TMAO/H2S ratio, and IgG protein expression and increased sugar water preference and brain occludin and caudin-5 expressions of the PSD rats (P < 0.05). CONCLUSION: In PSD rats, TMAO/H2S ratio is correlated with neurological function score, immobility time in forced swimming and sugar water preference, and modulating intestinal flora can improve neurological function and depressive symptoms and improve the integrity of the blood-brain barrier.


Assuntos
Depressão , Microbioma Gastrointestinal , Metilaminas , Ratos , Animais , Depressão/etiologia , Depressão/terapia , Depressão/metabolismo , Ratos Sprague-Dawley , Fluoxetina , Ocludina , Antibacterianos , Água , Açúcares , Imunoglobulina G
5.
J Cell Mol Med ; 28(8): e18178, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38553964

RESUMO

Bergamot essential oil (BEO) is an extract of the bergamot fruit with significant neuroprotective effect. This study was to investigate the effects and the underlying mechanism of BEO in mitigating depression. GC-MS were used to identify its constituents. Antidepressive properties of BEO were evaluated by sucrose preference test (SPT), force swimming test (FST) and open field test (OFT). Nissl staining was used to determine the number of Nissl bodies in hippocampus (HIPP) of rats. Changes in HIPP dendritic length and dendritic spine density were detected by Golgi-Cox staining. Immunohistochemistry and Western blot were used to detect the postsynaptic density protein-95 (PSD-95) and synaptophysin (SYP) in the HIPP of rats. The enzyme-linked immunosorbent assay was used to determine the 5-hydroxytryptamine (5-HT), insulin-like growth factor 1 (IGF-1) and interleukin-1ß (IL-1ß) in the HIPP, serum and cerebrospinal fluid (CSF) of rats. Inhaled BEO significantly improved depressive behaviour in chronic unpredictable mild stress (CUMS) rats. BEO increased Nissl bodies, dendritic length and spine density, PSD-95 and SYP protein in the HIPP. Additionally, BEO upregulated serum 5-HT, serum and CSF IGF-1, while downregulating serum IL-1ß. Collectively, inhaled BEO mitigates depression by protecting the plasticity of hippocampal neurons, hence, providing novel insights into treatment of depression.


Assuntos
Depressão , Óleos Voláteis , Ratos , Animais , Depressão/tratamento farmacológico , Depressão/etiologia , Depressão/metabolismo , Óleos Voláteis/farmacologia , Óleos Voláteis/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Serotonina/metabolismo , Hipocampo/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Neurônios/metabolismo , Estresse Psicológico/complicações , Estresse Psicológico/tratamento farmacológico , Modelos Animais de Doenças , Comportamento Animal
6.
J Physiol ; 602(7): 1427-1442, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38468384

RESUMO

Fibroblast growth factor-2 (FGF2) is involved in the regulation of affective behaviour and shows antidepressant effects through the Akt and extracellular signal regulated kinase (ERK) 1/2 pathways. Nudix hydrolase 6 (NUDT6) protein is encoded from FGF2 gene's antisense strand and its role in the regulation of affective behaviour is unknown. Here, we overexpressed NUDT6 in the hippocampus and investigated its behavioural effects and the underlying molecular mechanisms affecting the behaviour. We showed that increasing hippocampal NUDT6 results in depression-like behaviour in rats without changing FGF2 levels or activating its downstream effectors, Akt and ERK1/2. Instead, NUDT6 acted by inducing inflammatory signalling, specifically by increasing S100 calcium binding protein A9 (S100A9) levels, activating nuclear factor-kappa B-p65 (NF-κB-p65), and elevating microglia numbers along with a reduction in neurogenesis. Our results suggest that NUDT6 could play a role in major depression by inducing a proinflammatory state. This is the first report of an antisense protein acting through a different mechanism of action than regulation of its sense protein. The opposite effects of NUDT6 and FGF2 on depression-like behaviour may serve as a mechanism to fine-tune affective behaviour. Our findings open up new venues for studying the differential regulation and functional interactions of sense and antisense proteins in neural function and behaviour, as well as in neuropsychiatric disorders. KEY POINTS: Hippocampal overexpression of nudix hydrolase 6 (NUDT6), the antisense protein of fibroblast growth factor-2 (FGF2), increases depression-like behaviour in rats. Hippocampal NUDT6 overexpression triggers a neuroinflammatory cascade by increasing S100 calcium binding proteinA9 (S100A9) expression and nuclear NF-κB-p65 translocation in neurons, in addition to microglial recruitment and activation. Hippocampal NUDT6 overexpression suppresses neurogenesis. NUDT6 exerts its actions without altering the levels or downstream signalling pathways of FGF2.


Assuntos
Depressão , Fator 2 de Crescimento de Fibroblastos , NF-kappa B , Animais , Ratos , Fator 2 de Crescimento de Fibroblastos/genética , Inflamação/genética , Neurogênese/genética , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Proteínas Proto-Oncogênicas c-akt , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Depressão/genética , Depressão/metabolismo
7.
J Psychiatr Res ; 173: 139-150, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38531144

RESUMO

BACKGROUND: Intestinal dysbacteriosis has frequently been involved in the context of depression. Nonetheless, only scant information is available about the features and functional changes of gut microbiota in female middle-aged depression (MAD). OBJECTIVE: This study aims to explore whether there are characteristic changes in the gut microbes of female MAD and whether these changes are associated with depressive-like behaviors. Meanwhile, this study observed alterations in the lipid metabolism function of gut microbes and further examined changes in plasma medium- and long-chain fatty acids (MLCFAs) in mice that underwent fecal microbiota transplantation (FMT). METHODS: Stool samples obtained from 31 MAD, along with 24 healthy individuals (HC) were analyzed by 16 S rRNA gene sequencing. Meanwhile, 14-month-old female C57BL/6J mice received antibiotic cocktails and then oral gavage of the microbiota suspension of MAD or HC for 3 weeks to reconstruct gut microbiota. The subsequent depressive-like behaviors, the composition of gut microbiota, as well as MLCFAs in the plasma were evaluated. RESULTS: A noteworthy disruption in gut microbial composition in MAD individuals compared to HC was observed. Several distinct bacterial taxa, including Dorea, Butyricicoccus, and Blautia, demonstrated associations with the demographic variables. A particular microbial panel encompassing 49 genera effectively differentiated MAD patients from HC (AUC = 0.82). Fecal microbiome transplantation from MAD subjects led to depressive-like behaviors and dysfunction of plasma MLCFAs in mice. CONCLUSIONS: These findings suggest that microbial dysbiosis is linked to the pathogenesis of MAD, and its role may be associated with the regulation of MLCFAs metabolism.


Assuntos
Microbioma Gastrointestinal , Pessoa de Meia-Idade , Camundongos , Humanos , Feminino , Animais , Lactente , Microbioma Gastrointestinal/genética , Fezes/microbiologia , Depressão/terapia , Depressão/metabolismo , Camundongos Endogâmicos C57BL , Transplante de Microbiota Fecal , RNA Ribossômico 16S/genética
8.
J Psychiatr Res ; 173: 183-191, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547740

RESUMO

Accumulating evidence reveals the metabolism and neurotransmitter systems are different in major depressive disorder (MDD) between adolescent and adult patients; however, much is still unknown from the gut microbiome perspective. To minimize confounding factors such as geographical location, ethnicity, diet, and drugs, we investigated the gut microbial differences between adolescent and adult male Sprague-Dawley rats. We exposed the adolescent rats to chronic unpredictable mild stress (CUMS) for 3 weeks and assessed their behavior using the sucrose preference test (SPT), open field test (OFT), and forced swimming test (FST). We collected and sequenced fecal samples after the behavioral tests and compared them with our previous data on adult rats. Both adolescent and adult CUMS rats exhibited reduced sucrose preference in SPT, reduced total distance in OFT, and increased immobility time in FST. Moreover, compared to their respective controls, the adolescent CUMS rats had distinct amplicon sequence variants (ASVs) mainly in the Muribaculaceae family, Bacteroidetes phylum, while the adult CUMS rats had those in the Lachnospiraceae family, Firmicutes phylum. In the adolescent group, the Muribaculaceae negatively correlated with FST and positively correlated with SPT and OFT. In the adult group, the different genera in the Lachnospiraceae showed opposite correlations with FST. Furthermore, the adolescent CUMS rats showed disrupted microbial functions, such as "Xenobiotics biodegradation and metabolism" and "Immune system", while the adult CUMS rats did not. These results confirmed the gut microbiota differences between adolescent and adult rats after CUMS modeling and provided new insight into the age-related influence on depression models.


Assuntos
Transtorno Depressivo Maior , Microbioma Gastrointestinal , Humanos , Ratos , Animais , Masculino , Adolescente , Depressão/etiologia , Depressão/metabolismo , Antidepressivos/uso terapêutico , Ratos Sprague-Dawley , Transtorno Depressivo Maior/tratamento farmacológico , Estresse Psicológico/metabolismo , Modelos Animais de Doenças , Sacarose/metabolismo , Hipocampo/metabolismo
9.
Physiol Behav ; 279: 114530, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38552706

RESUMO

Depression is a serious mental illness. Previous studies found that early life stress (ELS) plays a vital role in the onset and progression of depression. However, relevant studies have not yet been able to explain the specific effects of early stress on stress-induced depression sensitivity and individual behavior during growth. Therefore, we constructed a maternal separation (MS) model and administered chronic social frustration stress at different stages of their growth while conducting metabolomics analysis on the hippocampus of mice. Our results showed that the immobility time of mice in the forced swimming test was significantly reduced at the end of MS. Meanwhile, mice with MS experience significantly decreased total movement distance in the open field test and sucrose preference ratio in the sucrose preference test when subjected to chronic social defeat stress (CSDS) during adolescence. In adulthood, the results were the opposite. In addition, we found that level changes in metabolites such as Beta-alanine, l-aspartic acid, 2-aminoadipic acid, and Glycine are closely related to behavioral changes. These metabolites are mainly enriched in Pantothenate, CoA biosynthesis, and Beta Alanine metabolism pathways. Our experiment revealed that the effects of ELS vary across different age groups. It will increase an individual's sensitivity to depression when facing CSDS in adolescence, but it will reduce their sensitivity to depression when facing CSDS in adulthood. This may be achieved by regulating the hippocampus's Pantothenate and CoA biosynthesis and Beta Alanine metabolism pathways represented by Beta-alanine, l-Aspartic acid, 2-aminoadipic acid, and Glycine metabolites.


Assuntos
Depressão , Privação Materna , Camundongos , Animais , Depressão/etiologia , Depressão/metabolismo , Ácido 2-Aminoadípico/metabolismo , Ácido 2-Aminoadípico/farmacologia , Hipocampo/metabolismo , Glicina/farmacologia , Sacarose/farmacologia , beta-Alanina/metabolismo , beta-Alanina/farmacologia , Estresse Psicológico/metabolismo , Comportamento Animal/fisiologia , Modelos Animais de Doenças
10.
Behav Brain Res ; 465: 114934, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38432303

RESUMO

BACKGROUND: Depression is a common psychiatric disorder with limited effective treatments. Research suggests that depression involves apoptosis mechanisms. Quercetin (QUE) has been reported to have anti-apoptotic activities. In this study, we aimed to investigate the effects and mechanisms of QUE in chronic unpredictable mild stress (CUMS)-induced depression. METHODS: After establishing mouse models of CUMS-induced depression, the mice were randomly assigned into four groups: control, CUMS, CUMS+QUE, and CUMS+Fluoxetine (FLX). The body weight of the mice was measured during the study. Then, depression-associated behaviors were evaluated using the sucrose preference test (SPT), novelty suppressed feeding test (NSFT), forced swim test (FST) and tail suspension test (TST). Apoptosis in the hippocampus and prefrontal cortex was determined using flow cytometry. Bcl-2 and Nrf2 protein expressions in the hippocampus and prefrontal cortex were also detected. Furthermore, Western blot was used to measure the protein levels of p-ERK, ERK, p-CREB, CREB, and Nrf2 in brain tissues. RESULTS: QUE or FLX administration increased the body weight of the CUMS mice. Behavioral tests indicated that CUMS mice developed a state of depression, but QUE or FLX treatment improved their depression-associated behaviors. Meanwhile, QUE or FLX treatment decreased apoptosis in the hippocampus and prefrontal cortex. Furthermore, the decreased Nrf2 protein expression, ERK and CREB phosphorylation in CUMS group were enhanced by QUE or FLX administration. CONCLUSION: QUE could attenuate brain apoptosis in mice with CUMS-induced depression, and the mechanism may be related to the ERK/Nrf2 pathway, indicating that QUE could be a potential treatment for depression.


Assuntos
Depressão , Quercetina , Humanos , Camundongos , Animais , Depressão/tratamento farmacológico , Depressão/etiologia , Depressão/metabolismo , Quercetina/farmacologia , Antidepressivos/farmacologia , Antidepressivos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fluoxetina/farmacologia , Córtex Pré-Frontal/metabolismo , Hipocampo/metabolismo , Apoptose , Peso Corporal , Estresse Psicológico/complicações , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Modelos Animais de Doenças
11.
Neurochem Int ; 175: 105723, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490486

RESUMO

Impaired olfactory function may be associated with the development of psychiatric disorders such as depression and anxiety; however, knowledge on the mechanisms underlying psychiatric disorders is incomplete. A reversible model of olfactory dysfunction, zinc sulfate (ZnSO4) nasal-treated mice, exhibit depression-like behavior accompanying olfactory dysfunction. Therefore, we investigated olfactory function and depression-like behaviors in ZnSO4-treated mice using the buried food finding test and tail suspension test, respectively; investigated the changes in the hippocampal microglial activity and neurogenesis in the dentate gyrus by immunohistochemistry; and evaluated the inflammation and microglial polarity related-proteins in the hippocampus using western blot study. On day 14 after treatment, ZnSO4-treated mice showed depression-like behavior in the tail suspension test and recovery of the olfactory function in the buried food finding test. In the hippocampus of ZnSO4-treated mice, expression levels of ionized calcium-binding adapter molecule 1 (Iba1), cluster of differentiation 40, inducible nitric oxide synthase, interleukin (IL)-1ß, IL-6, tumor necrosis factor-α, cleaved caspase-3, as well as the number of Iba1-positive cells and cell body size increased, and arginase-1 expression and neurogenesis decreased. Except for the increased IL-6, these changes were prevented by a microglia activation inhibitor, minocycline. The findings suggest that neuroinflammation due to polarization of M1-type hippocampal microglia is involved in depression accompanied with olfactory dysfunction.


Assuntos
Depressão , Transtornos do Olfato , Humanos , Camundongos , Animais , Depressão/metabolismo , Microglia/metabolismo , Interleucina-6/metabolismo , Hipocampo/metabolismo
12.
Behav Brain Res ; 464: 114929, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38428646

RESUMO

This study evaluated the effects of citicoline and silymarin nanomicelles (SMnm) in repeated restraint stress (RRS). METHOD: Mice were exposed to RRS for four consecutive days, 2 hrs. daily. On day 5 of the study, SMnm (25 and 50 mg/kg, i.p.) and citicoline (25 and 75 mg/kg), and a combination of them (25 mg/kg, i.p.) were initiated. On day 18, anxiety-like behavior, behavioral despair, and exploratory behavior were evaluated. The prefrontal cortex (PFC) and the hippocampus were dissected measuring brain-derived neurotrophic factor (BDNF), cAMP response element-binding protein (CREB), and tumor necrosis factor-alpha (TNF-α) through Western Blot and ELISA, respectively. RESULTS: In RR-exposed mice, anxiety-like behavior in the elevated plus maze (EPM) was enhanced by reductions in open arm time (OAT%) P < 0.001, and open arm entry (OAE%) P < 0.001. In the forced swimming test (FST), the immobility increased P < 0.001 while the swimming and climbing reduced P < 0.001. In the open field test (OFT), general motor activity was raised P < 0.05. Further, body weights reduced P < 0.001, and tissue BDNF and pCREB expressions decreased P < 0.001 while TNF-α increased P < 0.001. Conversely, SMnm, citicoline and their combination could reduce anxiety-like behavior P < 0.001. The combination group reduced the depressive-like behaviors P < 0.001. Moreover, body weights were restored P < 0.001. Besides, BDNF and pCREB expressions increased while TNF-α reduced, P < 0.001. CONCLUSION: The combination synergistically improved emotion-like behaviors, alleviating the inflammation and upregulating the hippocampal BDNF-mediated CREB signaling pathway.


Assuntos
Antidepressivos , Silimarina , Camundongos , Animais , Antidepressivos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Citidina Difosfato Colina/metabolismo , Citidina Difosfato Colina/farmacologia , Silimarina/farmacologia , Silimarina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Hipocampo/metabolismo , Peso Corporal , Depressão/metabolismo
13.
Neurosci Lett ; 825: 137709, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38431038

RESUMO

Wistar-Kyoto (WKY) rats subjected to chronic mild stress (CMS) represent a valid model of treatment-resistant depression (TRD). Considering that depression is more prevalent in women than in men, in the present study, female rats were used. We investigated the effect of CMS on behavior and different factors involved in neuroinflammatory processes and neuroplasticity in the hippocampus and medial prefrontal cortex (mPFC) of WKY female rats. The results show that unstressed WKY females exhibited hypolocomotion, decreased exploratory behavior, and an increase in the total grooming time. After exposure to CMS, WKY females displayed intensified grooming. To investigate potential neural mechanisms underlying these behavioral changes, we analyzed signaling and inflammatory pathways in the hippocampus and mPFC. The findings indicate reduced BDNF and elevated levels levels of IL-1ß in both brain structures and NLRP3 in the mPFC of unstressed WKY female rats. WKY rats subjected to CMS showed a further decrease in BDNF levels and increased IL-1ß and NLRP3 in these brain structures. WKY showed reduced pERK1/2 and increased pp38 levels in both brain structures, while CMS revealed a further increase of pp38 in WKY in these brain structures. Expressions of p110ß and pAKT were decreased in the hippocampus and mPFC of WKY rats. The CMS further suppressed p110 and the downstream AKT phosphorylation in the hippocampus, but did not affect the p110 and pAKT in the mPFC. Our findings indicate behavioral and molecular differences in genetically vulnerable WKY female rats and in their response to CMS that may be involved in TRD.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Humanos , Masculino , Ratos , Feminino , Animais , Ratos Endogâmicos WKY , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Córtex Pré-Frontal/metabolismo , Hipocampo/metabolismo , Depressão/metabolismo , Estresse Psicológico , Modelos Animais de Doenças
14.
Biomed Pharmacother ; 173: 116425, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490155

RESUMO

Depression is a common mental health disorder, and in recent years, the incidence of various forms of depression has been on the rise. Most medications for depression are highly dependency-inducing and can lead to relapse upon discontinuation. Therefore, novel treatment modalities and therapeutic targets are urgently required. Traditional Chinese medicine (TCM) offers advantages in the treatment of depression owing to its multi-target, multi-dimensional approach that addresses the root cause of depression by regulating organ functions and balancing Yin and Yang, with minimal side effects. Cynaroside (CNS), an extract from the traditional Chinese herb honeysuckle, is a flavonoid compound with antioxidant properties. In this study, network pharmacology identified 44 potential targets of CNS associated with depression and several highly correlated inflammatory signaling pathways. CNS alleviated LPS-induced M1 polarization and the release of inflammatory factors in BV-2 cells. Transcriptomic analysis and validation revealed that CNS reduced inflammatory polarization, lipid peroxidation, and ferroptosis via the IRF1/SLC7A11/GPX4 signaling pathway. In vivo experiments showed that CNS treatment had effects similar to those of fluoxetine (FLX). It effectively ameliorated anxiety-, despair-, and anhedonia-like states in chronic unpredictable mild stress (CUMS)-induced mice and reduced microglial activation in the hippocampus. Thus, we conclude that CNS exerts its therapeutic effect on depression by inhibiting microglial cells from polarizing into the M1 phenotype and reducing inflammation and ferroptosis levels. This study provides further evidence that CNS is a potential antidepressant, offering new avenues for the treatment of depression.


Assuntos
Depressão , Ferroptose , Glucosídeos , Luteolina , Camundongos , Animais , Depressão/tratamento farmacológico , Depressão/metabolismo , Microglia/metabolismo , Hipocampo , Comportamento Animal , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Estresse Psicológico/tratamento farmacológico , Modelos Animais de Doenças
15.
J Ethnopharmacol ; 328: 118007, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38492791

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Rosa damascena is an ancient plant with significance in both medicine and perfumery that have a variety of therapeutic properties, including antidepressant, anti-anxiety, and anti-stress effects. Rose damascena essential oil (REO) has been used to treat depression, anxiety and other neurological related disorders in Iranian traditional medicine. However, its precise mechanism of action remains elusive. AIM OF THE STUDY: The aim of this study was to investigate the impact and mechanism underlying the influence of REO on chronic unpredictable mild stress (CUMS) rats. MATERIALS AND METHODS: Gas chromatography-mass spectrometry (GC-MS) technique coupling was used to analyze of the components of REO. A CUMS rat model was replicated to assess the antidepressant effects of varying doses of REO. This assessment encompassed behavioral evaluations, biochemical index measurements, and hematoxylin-eosin staining. For a comprehensive analysis of hippocampal tissues, we employed transcriptomics and incorporated weighting coefficients by means of network pharmacology. These measures allowed us to explore differentially expressed genes and biofunctional pathways affected by REO in the context of depression treatment. Furthermore, GC-MS metabolomics was employed to assess metabolic profiles, while a joint analysis in Metscape facilitated the construction of a network elucidating the links between differentially expressed genes and metabolites, thereby elucidating potential relationships and clarifying key pathways regulated by REO. Finally, the expression of relevant proteins in the key pathways was determined through immunohistochemistry and Western blot analysis. Molecular docking was utilized to investigate the interactions between active components and key targets, thereby validating the experimental results. RESULTS: REO alleviated depressive-like behavior, significantly elevated levels of the neurotransmitter 5-hydroxytryptamine (5-HT), and reduced hippocampal neuronal damage in CUMS rats. This therapeutic effect may be associated with the modulation of the serotonergic synapse signaling pathway. Furthermore, REO rectified metabolic disturbances, primarily through the regulation of amino acid metabolic pathways. Joint analysis revealed five differentially expressed genes (EEF1A1, LOC729197, ATP8A2, NDST4, and GAD2), suggesting their potential in alleviating depressive symptoms by modulating the serotonergic synapse signaling pathway and tryptophan metabolism. REO also modulated the 5-HT2A-mediated extracellular regulated protein kinases-cAMP-response element binding protein-brain-derived neurotrophic factor (ERK-CREB-BDNF) pathway. In addition, molecular docking results indicated that citronellol, geraniol and (E,E)-farnesol in REO may serve as key active ingredients responsible for its antidepressant effects. CONCLUSIONS: This study is the first to report that REO can effectively alleviate CUMS-induced depression-like effects in rats. Additionally, the study offers a comprehensive understanding of its intricate antidepressant mechanism from a multi-omics and multi-level perspective. Our findings hold promise for the clinical application and further development of this essential oil.


Assuntos
Rosa , Ratos , Animais , Serotonina/metabolismo , Irã (Geográfico) , Simulação de Acoplamento Molecular , Ratos Sprague-Dawley , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Depressão/metabolismo , Transdução de Sinais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Sinapses/metabolismo , Estresse Psicológico/tratamento farmacológico , Hipocampo , Modelos Animais de Doenças
16.
Behav Brain Res ; 465: 114962, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38499157

RESUMO

BACKGROUND: Mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP1) is upregulated in the hippocampus of patients with depression, while pharmacological inhibition of hippocampal MKP1 can mitigate depression-like behaviors in rodents. In addition, MAPK signaling regulates autophagy, and antidepressants were recently shown to target autophagic signaling pathways. We speculated that MKP1 contributes to depression by enhancing hippocampal autophagy through dephosphorylation of the MAPK isoform ERK1/2. METHODS: We established a rat depression model by exposure to chronic unpredictable mild stress (CUMS), and then examined depression-like behaviors in the sucrose preference test (SPT) and forced swimming test (FST) as well as expression changes in hippocampal MKP1, ERK1/2, phosphorylated ERK1/2, and autophagy-related proteins LC3II by Western blotting and immunostaining. These same measurements were repeated in rats exposed to CUMS following hippocampal infusion of a MKP1-targeted shRNA. Finally, the effects of MKP1 expression level on autophagy we examined in rat GMI-R1 microglia. RESULTS: CUMS-exposed rats demonstrated anhedonia in the SPT and helplessness in the FST, two core depression-like behaviors. Expression levels of MKP1 and LC3II were upregulated in the hippocampus of CUMS rats, suggesting enhanced autophagy, while pERK/ERK was downregulated. Knockdown of hippocampal MKP1 mitigated depression-like behaviors, downregulated hippocampal LC3II expression, and upregulated hippocampal pERK/ERK. Similarly, MKP1 knockdown in GMI-R1 cells upregulated pERK/ERK and reduced the number of LC3II autophagosomes, while MKP1 overexpression had the opposite effects. CONCLUSION: Enhanced hippocampal autophagy via MKP1-mediated ERK dephosphorylation may contribute to the development of depression.


Assuntos
Depressão , Hipocampo , Animais , Ratos , Antidepressivos/farmacologia , Autofagia , Depressão/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Transdução de Sinais , Estresse Psicológico/metabolismo
17.
Biochem Biophys Res Commun ; 704: 149706, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38432144

RESUMO

Glioma patients often undertake psychiatric disorders such as depression and anxiety. There are several clinical epidemiological studies on glioma-associated depression, but basic research and corresponding animal experiments are still lacking. Here, we observed that glioma-bearing mice exhibited atypical depression-like behaviors in orthotopic glioma mouse models. The concentrations of monoamine neurotransmitters were detected by enzyme-linked immunosorbent assay (ELISA), revealing a decrease in 5-hydroxytryptamine (5-HT) levels in para-glioma tissues. The related gene expression levels also altered, detected by quantitative RT-PCR. Then, we developed a glioma-depression comorbidity mouse model. Through sucrose preference test (SPT), forced swimming test (FST), tail suspension test (TST) and other tests, we found that the occurrence of glioma could lead to changes in depression-like behaviors in a chronic unpredictable mild stress (CUMS) mouse model. The results of RNA sequencing (RNA-seq) indicated that the altered expression of glutamatergic synapse related genes in the paratumor tissues might be one of the main molecular features of the comorbidity model. Our findings suggested that the presence of glioma caused and altered depression-like behaviors, which was potentially related to the 5-HT and glutamatergic synapse pathways.


Assuntos
Depressão , Serotonina , Humanos , Camundongos , Animais , Depressão/metabolismo , Serotonina/metabolismo , Antidepressivos/farmacologia , Comportamento Animal , Natação , Estresse Psicológico/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo
18.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396684

RESUMO

Polysaccharides are one of the main active ingredients of Polygonum sibiricum (PS), which is a food and medicine homolog used throughout Chinese history. The antidepressant-like effects of PSP and its underlying mechanisms remain elusive, especially the regulation of microglial polarization. The current study determined the chemical composition and structural characteristics of PSP. Then, the chronic unpredictable mild stress (CUMS) procedure was carried out on the zebrafish for 5 weeks, and PSP was immersed for 9 days (1 h/d). The body weight of zebrafish was monitored, and behavioral tests, including the novel tank test and light and dark tank test, were performed to evaluate the antidepressant-like effects of PSP. Then, the function of the hypothalamic-pituitary-interrenal (HPI) axis, the levels of peripheral inflammation, neuronal and blood-brain barrier damage in the mesencephalon and telencephalon, and the mRNA expression of M1/M2 phenotype genes in the brain were examined. PSP samples had the typical structural characteristics of polysaccharides, consisting of glucose, mannose, and galactose, with an average Mw of 20.48 kDa, which presented porous and agglomerated morphologies. Compared with untreated zebrafish, the depression-like behaviors of CUMS-induced zebrafish were significantly attenuated. PSP significantly decreased the levels of cortisol and pro-inflammatory cytokines and increased the levels of the anti-inflammatory cytokines in the body of CUMS-induced depressive zebrafish. Furthermore, PSP remarkably reversed the neuronal and blood-brain barrier damage in the mesencephalon and telencephalon and the mRNA expression of M1/M2 phenotype genes in the brain. These findings indicated that the antidepressant-like effects of PSP were related to altering the HPI axis hyperactivation, suppressing peripheral inflammation, inhibiting neuroinflammation induced by microglia hyperactivation, and modulating microglial M1/M2 polarization. The current study provides the foundations for future examinations of PSP in the functional foods of emotional regulation.


Assuntos
Polygonum , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Microglia/metabolismo , Polygonum/metabolismo , Antidepressivos/farmacologia , Inflamação/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Citocinas/metabolismo , RNA Mensageiro/metabolismo , Depressão/tratamento farmacológico , Depressão/etiologia , Depressão/metabolismo , Estresse Psicológico/metabolismo , Modelos Animais de Doenças
19.
CNS Neurosci Ther ; 30(2): e14598, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38332552

RESUMO

AIMS: The N-methyl-D-aspartate (NMDA) receptor (NMDAR) has been proven to be strongly correlated with rapid antidepressant effects. Here, GW043, as a new compound targeting NMDAR, we explored its antidepressant effects and its mechanism of action. METHODS: Our study utilized electrophysiological techniques to confirm the effect of GW043 on NMDAR currents. Additionally, we assessed the selectivity of GW043 through high-throughput receptor-ligand binding experiments. The antidepressant properties of GW043 were examined using rodent behavioral models including the Forced Swim Test (FST), Tail Suspension Test (TST), and Chronic Unpredictable Mild Stress (CUMS). Mechanistic insight into GW043's onset was gained through western blot analysis, BrdU staining, Golgi staining, and electrophysiological techniques. RESULTS: Electrophysiological studies indicated that GW043 acts as a partial agonist of NMDAR. Behavioral experiments confirmed the antidepressant effect of GW043 in rodents. Mechanistic investigations revealed that GW043 modulates synaptic plasticity through the LTP and BDNF-mTOR pathways, consequently leading to an increase in the number of newborn neurons and subsequent antidepressant effects. CONCLUSION: Our findings disclose that GW043, as a partial agonist of NMDAR, can reverse depression-like behaviors in rats by modulating synaptic plasticity, indicating its potential as an antidepressant agent.


Assuntos
Antidepressivos , Receptores de N-Metil-D-Aspartato , Ratos , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Natação , Depressão/metabolismo , Hipocampo/metabolismo
20.
Brain Res ; 1831: 148829, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38423239

RESUMO

OBJECTIVE: To investigate the expression of the precursor of brain-derived neurotrophic factor (proBDNF) and its high-affinity receptor p75NTR in neurons of emotion-related brain areas (prefrontal cortex, hippocampus, and amygdala) in rats with post-stroke depression (PSD), and to explore the expression levels of proBDNF and p75NTR in neurons of emotion-related brain areas by injecting tissue plasminogen activator (t-PA) into the lateral ventricle of PSD rats, this significantly improved the stress-induced depression-like behavior,thus further validating the above results. METHODS: Rats were randomly divided into four groups: a normal control group (n = 8), a depression group (n = 8), a stroke group (n = 8), and a PSD group (n = 8). The rat model of stroke was established by thread embolism, and the PSD animal model was induced by chronic unpredictable mild stress (CUMS) and solitary feeding. Behavioral tests were conducted, including weight measurement, open field tests, and sucrose preference tests. Immunofluorescence double labeling was used to detect the expression of proBDNF and p75NTR in neurons of emotion-related brain regions in the PSD rat model. Four weeks after CUMS treatment, the PSD group was selected. Rats were infused with t-PA (3 µg dissolved in 6 µL saline, Boehringer Ingelheim), proBDNF (3 µg dissolved in 6 µL saline, Abcam), or equal-volume NS once per day for 7 consecutive days using the syringe pump connecting to injection needles. After 7 days of continuous administration, animal behavior was assessed through scoring, and the expression of proBDNF and p75NTR in the emotion-related brain regions of the PSD rat model was detected using immunofluorescence double labeling. RESULTS: Compared with the normal control group and the stroke group, the body weight, sucrose water consumption, and vertical movement distance in the PSD group were significantly lower (P < 0.05). In contrast, when compared with the proBDNF injection group and saline injection group, the weight, sucrose water consumption, field horizontal movement, and vertical movement distance of the t-PA injection group significantly increased after PSD lateral ventricle intubation.Double immunofluorescence revealed a higher neuronal expression of proBDNF as well as p75NTR in the prefrontal cortex and hippocampus of PSD rats compared to control animals (P < 0.05). In the amygdala, the expression levels of proBDNF and P75NTR were significantly reduced in the PSD group compared to the control group (P < 0.05). The results of the expression levels of proBDNF and P75NTR in the emotion-related brain regions of PSD rats injected with t-PA showed that proBDNF and P75NTR was significantly reduced in the prefrontal cortex, hippocampus, and amygdala of PSD rats compared to those of the NS and proBDNF groups (P < 0.05). CONCLUSIONS: The increased expression of the brain-derived neurotrophic factor precursor proBDNF and its receptor p75NTR in neurons of emotion-related brain regions may play an important role in the pathogenesis of PSD.t-PA reduced the expression of proBDNF and its receptor p75NTR in neurons emotion-related brain regions and significantly improved the stress-induced depression-like behavior. Therefore, it is reasonable to assume that exogenous injection of t-PA may alleviate the depressive symptoms of PSD patients.Reducing the expression of proBDNF by injecting t-PA may provide a novel therapeutic approach for the treatment of stress-related mood disorders.


Assuntos
Depressão , Acidente Vascular Cerebral , Humanos , Ratos , Animais , Depressão/etiologia , Depressão/metabolismo , Ativador de Plasminogênio Tecidual/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Neurônios/metabolismo , Sacarose/metabolismo , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...